Véhicule sous-marin téléguidé

Utiliser cette image

Puis-je réutiliser cette image sans autorisation? Oui

Les images sur le portail de la collection d’Ingenium ont la licence Creative Commons suivante :

Copyright Ingenium / CC BY-NC-ND (Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)

ATTRIBUER CETTE IMAGE

Ingenium, 2016.0064.001
Permalien:

Ingenium diffuse cette image sous le cadre de licence Creative Commons et encourage son téléchargement et sa réutilisation à des fins non commerciales. Veuillez mentionner Ingenium et citer le numéro de l’artefact.

TÉLÉCHARGER L’IMAGE

ACHETER CETTE IMAGE

Cette image peut être utilisée gratuitement pour des fins non commerciales.

Pour un usage commercial, veuillez consulter nos frais de reproduction et communiquer avec nous pour acheter l’image.

TYPE D’OBJET
tethered
DATE
1975
NUMÉRO DE L’ARTEFACT
2016.0064.001
FABRICANT
Inconnu
MODÈLE
TROV
EMPLACEMENT
Inconnu

Plus d’information


Renseignements généraux

Nº de série
S/O
Nº de partie
1
Nombre total de parties
1
Ou
S/O
Brevets
S/O
Description générale
Aluminum body with ferrous metal parts, and synthetic tubing, component casings, and membranes

Dimensions

Remarque : Cette information reflète la taille générale pour l’entreposage et ne représente pas nécessairement les véritables dimensions de l’objet.

Longueur
198,0 cm
Largeur
169,0 cm
Hauteur
175,0 cm
Épaisseur
S/O
Poids
S/O
Diamètre
S/O
Volume
S/O

Lexique

Groupe
Transports maritimes
Catégorie
Plongée
Sous-catégorie
S/O

Fabricant

Ou
Inconnu
Pays
Inconnu
État/province
Inconnu
Ville
Inconnu

Contexte

Pays
Canada
État/province
Inconnu
Période
Inconnu
Canada
The expansion of underwater mobility has played a crucial role in the transformation of Canada. Critical civil engineering projects like bridges, tunnels and coastal infrastructure could only be completed with the application of technologies that allowed workers to function under water for increasingly long periods of time. But the limits of human physiology were such that, by the 1960s, researchers were beginning to explore the possibilities of "unmanned" underwater mobility. Canadians have been at the forefront of these developments since the 1970s with several companies developing different types of submersible vehicles. The ISE TROV is of particular significance because it was one of the world’s first commercial ROV systems and because the company that made it was and remains an internationally recognized leader in the field. The company’s founder, James McFarlane, has created a niche for his products, in part, by understanding the individual missions of his buyers and designing to meet their specific needs. In this small market, ISE has prospered by building a wide variety of specialized vehicles for, among other things, inspecting oil pipelines and telephone cables, underwater surveying and geological research. It also makes vehicles for the military and its experience with remote control has led it into the related field of designing robotic manipulation devices. The TROV represents government-industry cooperation in research and development. The oil crisis of the mid-1970s pushed the boundaries of oil exploration creating an urgent need for sophisticated equipment that could function in harsh offshore environments. None was harsher than the Canadian arctic. After CCIW tested the TROV in Lake Ontario (which had its own special challenges), the team moved it to Panarctic Oils Limited’s Drake P-40 drill site northeast of Melville Island. There, researchers from the oil company and the departments of Energy, Mines and Resources, Fisheries and Environment assessed the feasibility of using this type of submersible for geological investigation and surveying. The fact the oil industry remains one of ISE’s main customers suggests that the vehicle performed well in these tests.
Fonction
Used to test and assess the capabilities of the technology developed for this remotely operated vehicle in different environments and roles. This was meant to be a versatile vehicle that could undertake different types of work, including geological research and underwater archaeology.
Technique
Underwater environments are inhospitable for human beings but our determination to work there has forced researchers to find ways to make it practical. Between 1945 and 1980, researchers made dramatic advances in underwater mobility. They explored everything from the design and development of scuba gear and submersibles to the behaviour of the human body in high pressure environments. The goal of most of this research was to make it possible for humans to work more effectively and safely under water. Canadian researchers and companies played an important role in many of these developments. By the 1960s, though, researchers had begun to recognize that there were definite limits to what technology could do to improve human safety and capabilities under water. Some of them turned their attention to finding ways to remove humans from the undersea environment by developing remotely controlled submersibles. The challenge for researchers and engineers was to build a vehicle that was sufficiently robust to withstand the rigours of the underwater environment while at the same time was sophisticated and responsive enough to carry out complex tasks. Military researchers did most of earliest work on remotely operated vehicles but the oil industry was not far behind. In 1962 Shell Oil launched its Mobot, “a Cyclops-like robot” that was supposed to land on a track surrounding the blow out preventer stack of an oil rig and then run around the track “turning setscrews with a socket on an extendable arm.” The Mobot, though, had “an unfortunate habit of going out of control on the bottom and was constantly having to be rescued.” Thus, instead of replacing expensive divers, it ended up being a big money-maker for diving companies. Researchers, of course, did not give up on the idea of remotely operated vehicles. With increasing access to sophisticated electronics, they saw great potential for these devices. Their gamble began to pay off when, in the mid-1970s, the oil embargo made exploration in increasingly challenging regions more attractive. Many researchers saw the opportunity to develop “smaller, high-endurance robotic vehicles for various subsea tasks” that could not be done profitably by divers or even human occupied submersibles. The ISE TROV is good example of an early commercial submersible that not only met these demanding requirements but also helped to establish ISE in a very competitive marketplace. The TROV was tested in at least two very different environments, carrying out very different tasks. The results of those tests informed future use of the vehicle (and some small adaptations) and allowed the company to refine their product. The company went on to produce some 200 remotely operated underwater vehicles of various types in the next 20 years and is still a leader in the field today.
Notes sur la région
Inconnu

Détails

Marques
On proper front: "T.R.O.V./ McELHANNEY OFFSHORE, VANCOUVER"/ On proper left and proper right, in black markings on a white background: Environment/ Canada/ Inland/ Waters/ Environnement/ Canada/ Eaux/ intérieures"/ In faded black letters on a metal band on top of the motor on both the proper left and proper right: "NO STEP"/ In faded black letters on the metal casing on the proper left and proper right, toward the back: "KEEP CLEAR OF/ PROPELLER [arrow pointing down]"/
Manque
Camera
Fini
Predominantly light grey metal frame and body with black and red markings, and white and red design on proper right and proper left. Black, red and translucent tubing and cables connect different components on the under-side of the object. Two predominantly blue pumps can be found near the base of the unit and two cream-coloured porous blocks with red exteriors are in the rear section.
Décoration
S/O

FAIRE RÉFÉRENCE À CET OBJET

Si vous souhaitez publier de l’information sur cet objet de collection, veuillez indiquer ce qui suit :

Fabricant inconnu, Véhicule sous-marin téléguidé, 1975, Numéro de l'artefact 2016.0064, Ingenium - Musées des sciences et de l'innovation du Canada, http://collections.ingeniumcanada.org/fr/id/2016.0064.001/

RÉTROACTION

Envoyer une question ou un commentaire sur cet artefact.

Plus comme ceci


...
Station subaq…

2014.0305.001

Object

...
Cordon de blo…

2017.0005.004

Object

...
Levier de com…

2017.0005.002

Object

...
Bloc d'alimen…

2017.0005.003

Object

...
Bras robotique

2017.0005.001

Object

...
Étui

2017.0005.005

Object

...
Réplique de s…

1986.0908.001

Object

...
Ordinateur

2017.0054.001

Object

...
Engrenage

1987.2661.001

Object

...
Engrenage

1987.2661.002

Object

...
Rondelle

1987.2661.003

Object

...
Bague

1987.2661.004

Object

...
Scanneur

2017.0013.001

Object

...
Livre

2014.0052.001

Object

...
Tablette élec…

2015.0119.002

Object

...
Câble

2015.0122.003

Object

...
Pièce de coqu…

1966.1057.002

Object

...
Étui

2015.0122.006

Object

...
Satellite

2017.0144.001

Object

...
Sacoche arriè…

2016.0147.001

Object

...
Sacoche arriè…

2016.0147.002

Object

...
Robot

2015.0119.001

Object

...
Support de mo…

1966.1057.003

Object

...
Vitrine

2017.0144.002

Object

...
Boîte de jonc…

2015.0122.002

Object

...
Interrupteur

1996.0639.001

Object

...
Transpondeur

2017.0055.008

Object

...
Transpondeur

2017.0055.009

Object

...
Transpondeur

2017.0055.010

Object

...
Transpondeur

2017.0055.011

Object

...
Transpondeur

2017.0055.012

Object

...
Affiche

2016.0203.001

Object

...
Tracteur

1970.1485.001

Object

...
Échantillon d…

2015.0285.001

Object

...
Target assemb…

2007.0058.001

Object

...
Clé USB

2017.0055.006

Object

...
Ornithoptere

2012.0089.001

Object

...
Tricycle

2016.0146.001

Object

...
Bracelet

2015.0119.003

Object

...
Contrôleur

2011.0160.001

Object

...
Échantillon d…

2015.0286.001

Object

...
Capuchon de c…

2017.0055.007

Object

...
Étui

2017.0055.013

Object

...
Pince

2014.0065.004

Object

...
Contrôleur

2011.0159.001

Object

...
Scanneur

2017.0055.001

Object

...
Tracteur

1974.0551.001

Object

...
Poisson remor…

1966.1057.001

Object

...
Échantillon d…

2014.0045.001

Object

...
Échantillon d…

2014.0045.002

Object

...
Échantillon d…

2014.0045.003

Object

...
Carte mémoire

2014.0065.003

Object

...
Modèle de loc…

2011.0100.002

Object

...
Ornithoptere

2012.0090.001

Object

...
Couvercle de …

2014.0065.002

Object

...
Tête artifici…

2016.0208.001

Object

...
Aile

2011.0158.005

Object

...
Tête artifici…

2016.0206.001

Object

...
Ordinateur

2016.0010.001

Object

...
Contrôle à fr…

2011.0159.003

Object

...
Récepteur aud…

2011.0158.017

Object

...
Plinthe

2013.0174.002

Object

...
Vêtement anti…

2002.0608.001

Object

...
Trousse de ma…

2014.0070.001

Object

...
Plume

2014.0070.005

Object

...
Détecteur d'o…

2016.0197.001

Object

...
Boulon

2013.0174.004

Object

...
Boulon

2013.0174.005

Object

...
Boulon

2013.0174.006

Object

...
Boulon

2013.0174.007

Object

...
Rondelle

2013.0174.008

Object

...
Rondelle

2013.0174.009

Object

...
Rondelle

2013.0174.010

Object

...
Rondelle

2013.0174.011

Object

...
Rondelle

2013.0174.012

Object

...
Rondelle

2013.0174.013

Object

...
Rondelle

2013.0174.014

Object

...
Rondelle

2013.0174.015

Object

...
Adaptateur

2017.0055.002

Object

...
Aile

2011.0158.004

Object

...
Appareil d'es…

2003.0048.001

Object

...
Cordon de blo…

2015.0122.005

Object

...
Tracteur

1969.1316.001

Object

...
Préhenseur ro…

2013.0174.003

Object

...
Tête artifici…

2016.0207.001

Object

...
Case, disk

2014.0058.002

Object

Aucune image disponible.
Solar array m…

2011.0026.001

Object

...
Couvercle de …

2011.0160.002

Object

...
Stabilisateur…

2011.0158.009

Object

...
Magnétoscope …

2011.0158.020

Object

...
Cover, radiot…

2014.0066.003

Object

...
Cover, radiot…

2014.0066.004

Object

...
Plume

2014.0070.003

Object

...
Mining method…

2010.0276.001

Object

...
Cordon de blo…

2017.0055.003

Object

...
Cordon de blo…

2017.0055.004

Object

...
Câble

2017.0055.005

Object

...
Pompe à eau

1996.0429.001

Object

...
Thermostat

1992.1488.001

Object

...
Spacecraft ba…

2007.0059.001

Object